Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato
نویسندگان
چکیده
Quality is a key trait in plant breeding, especially for fruit and vegetables. Quality involves several polygenic components, often influenced by environmental conditions with variable levels of genotype × environment interaction that must be considered in breeding strategies aiming to improve quality. In order to assess the impact of water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced generation intercross (MAGIC) tomato population in contrasted environmental conditions over 2 years, one year in control vs. drought condition and the other in control vs. salt condition. Overall 250 individual lines from the MAGIC population-derived from eight parental lines covering a large diversity in cultivated tomato-were used to identify QTL in both experiments for fruit quality and yield component traits (fruit weight, number of fruit, Soluble Solid Content, firmness), phenology traits (time to flower and ripe) and a vegetative trait, leaf length. All the traits showed a large genotype variation (33-86% of total phenotypic variation) in both experiments and high heritability whatever the year or treatment. Significant genotype × treatment interactions were detected for five of the seven traits over the 2 years of experiments. QTL were mapped using 1,345 SNP markers. A total of 54 QTL were found among which 15 revealed genotype × environment interactions and 65% (35 QTL) were treatment specific. Confidence intervals of the QTL were projected on the genome physical map and allowed identifying regions carrying QTL co-localizations, suggesting pleiotropic regulation. We then applied a strategy for candidate gene detection based on the high resolution mapping offered by the MAGIC population, the allelic effect of each parental line at the QTL and the sequence information of the eight parental lines.
منابع مشابه
اثر شوری و نیتروژن بر کیفیت میوه و غلظت عناصر کم مصرف گوجهفرنگی در کشت هیدروپونیک
Salinity plays an important role in the reduction of tomato growth, especially in arid and semi-arid regions. Nitrogen (N) may increase tomato tolerance to salt stress by increasing plant growth. In order to investigate the interaction effect of salinity and nitrogen on tomato growth, fruit quality, and micronutrient concentration in tomato plants, a hydroponic experiment was conducted in a com...
متن کاملEffect of Calcium Chloride on Growth and Yield of Tomato under Sodium Chloride Stress
The effects of salinity and supplied calcium chloride on growth and leaf ions concentration of tomato (Lycopersicon esculentum L.) were investigated in Gorgan, Iran. A factorial experiment was conducted based on RCBD with four NaCl levels (0, 50, 100, and 150 mM) and four CaCl2 levels (0, 100, 200 and 300 mg L-1). Data of growth, yield and leaf’s Ca, K, and Na content were subjected to analyze ...
متن کاملPhytochemical and Quality Attributes of Strawberry Fruit under Osmotic Stress of Nutrient Solution and Foliar Application of Putrescine and Salicylic Acid
The moderating role of salicylic acid (SA) and putrescine (PUS) as plant growth regulators (PGRs), on the growth parameters and phytochemical and qualitative characteristics of strawberry fruit 'Selva' under osmotic stress was investigated under soilless culture. The osmotic potential (salinity) of the nutrient solution containing different NaCl concentrations (0, 7.5, 15, 30 and 45 mM) and fol...
متن کاملThe Potential of the MAGIC TOM Parental Accessions to Explore the Genetic Variability in Tomato Acclimation to Repeated Cycles of Water Deficit and Recovery
Episodes of water deficit (WD) during the crop cycle of tomato may negatively impact plant growth and fruit yield, but they may also improve fruit quality. Moreover, a moderate WD may induce a plant "memory effect" which is known to stimulate plant acclimation and defenses for upcoming stress episodes. The objective of this study was to analyze the positive and negative impacts of repeated epis...
متن کاملChanges in Alfalfa (Medicago sativa L.) Growth and Biochemical Traits in Response to Silicon Application under Different Irrigation Regime
To decrease adverse effects of water deficit is foliar application with chemical agents such as silicon. However, there is low information on the influence of silicon on alfalfa under drought stress conditions. Thus, the current study was conducted to assessment the effect of different silicon concentrations (0, 1 and 2 mili Molar concentration) on alfalfa growth trend and biochemical traits, w...
متن کامل